In vitro antifungal and fungicidal activities and erythrocyte toxicities of cyclic lipodepsinonapeptides produced by Pseudomonas syringae pv. syringae.

نویسندگان

  • K N Sorensen
  • K H Kim
  • J Y Takemoto
چکیده

Recent increases in fungal infections, the few available antifungal drugs, and increasing fungal resistance to the available antifungal drugs have resulted in a broadening of the search for new antifungal agents. Strains of Pseudomonas syringae pv. syringae produce cyclic lipodepsinonapeptides with antifungal activity. The in vitro antifungal and fungicidal activities of three cyclic lipodepsinonapeptides (syringomycin E, syringotoxin B, and syringostatin A) against medically important isolates were evaluated by a standard broth microdilution susceptibility method. Erythrocyte toxicities were also evaluated. All three compounds showed broad antifungal activities and fungicidal actions against most of the fungi tested. Overall, the cyclic lipodepsinonapeptides were more effective against yeasts than against the filamentous fungi. Syringomycin E and syringostatin A had very similar antifungal activities (2.5 to > 40 micrograms/ml) and erythrocyte toxicities. Syringotoxin B was generally less active (0.8 to 200 micrograms/ml) than syringomycin E and syringostatin A against most fungi and was less toxic to erythrocytes. With opportunities for modification, these compounds are potential lead compounds for improved antifungal agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fungicidal Activities and Mechanisms of Action of Pseudomonas syringae pv. syringae Lipodepsipeptide Syringopeptins 22A and 25A

The plant-associated bacterium Pseudomonas syringae pv. syringae simultaneously produces two classes of metabolites: the small cyclic lipodepsinonapeptides such as the syringomycins and the larger cyclic lipodepsipeptide syringopeptins SP22 or SP25. The syringomycins inhibit a broad spectrum of fungi (but particularly yeasts) by lipid-dependent membrane interaction. The syringopeptins are phyto...

متن کامل

PCR Detection of Cyclic Lipodepsinonapeptide-Producing Pseudomonas syringae pv. syringae and Similarity of Strains.

Many strains of Pseudomonas syringae pv. syringae produce one of four classes of small cyclic lipodepsinonapeptides: syringomycins, syringostatins, syringotoxins, or pseudomycins. These metabolites are phytotoxic and growth inhibitory against a broad spectrum of fungi. Their production is dependent upon the expression of conserved biosynthesis and export genes syrB and syrD, respectively. PCR a...

متن کامل

Evaluating Antibacterial Activity of In Vitro Culture of Ajwain (Trachyspermum copticum) Extract and Comparison with Seed Extract and Essential Oils

Trachyspermum copticum (Apiaceae) is an annual plant which grows in Iran. The fruits of T. copticum (Ajwain) traditionally were used as diuretic, carminative, and antihelmentic. Some biological effects of Ajwain such as antiviral, antifungal and antioxidant activities have been confirmed. The objective of the present investigation was toevaluate the antibacterial activity of e...

متن کامل

Solution conformation of the Pseudomonas syringae MSU 16H phytotoxic lipodepsipeptide Pseudomycin A determined by computer simulations using distance geometry and molecular dynamics from NMR data.

Pseudomycin A is a cyclic lipodepsinonapeptide phytotoxin produced by a strain of the plant pathogenic bacterium Pseudomonas syringae. Like other members of this family of bacterial metabolites, it is characterised by a fatty acylated cyclic peptide with mixed chirality and lactonic closure. Several biological activities of Pseudomycin A are lower than those found for some of its congeners, a d...

متن کامل

Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins.

In this study, for the first time, functionally active, recombinant, cysteine-rich plant proteins snakin-1 (SN1) and defensin (PTH1) were expressed and purified using a prokaryotic expression system. The overall level of antimicrobial activities of SN1 and PTH1 produced in Escherichia coli was commensurate with that of the same proteins previously obtained from plant tissues. Both proteins exhi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 40 12  شماره 

صفحات  -

تاریخ انتشار 1996